Recognition of Facial Action Units with Action Unit Classifiers and an Association Network

نویسندگان

  • JunKai Chen
  • Zenghai Chen
  • Zheru Chi
  • Hong Fu
چکیده

Most previous work of facial action recognition focused only on verifying whether a certain facial action unit appeared or not on a face image. In this paper, we report our investigation on the semantic relationships of facial action units and introduce a novel method for facial action unit recognition based on action unit classifiers and a Bayes network called Facial Action Unit Association Network (FAUAN). Compared with other methods, the proposed method attempts to identify a set of facial action units of a face image simultaneously. We achieve this goal by three steps. At first, the histogram of oriented gradients (HOG) is extracted as features and after that, a Multi-Layer Perceptron (MLP) is trained for the preliminary detection of each individual facial action unit. At last, FAUAN fuses the responses of all the facial action unit classifiers to determine a best set of facial action units. The proposed method achieves a promising performance on the extended Cohn-Kanade Dataset. Experimental results also show that when the individual unit classifiers are not so good, the performance could improve by nearly 10% in some cases when FAUAN is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Action Unit Recognition from Video Streams with Recurrent Neural Networks

Facial expressions are one of the parameters for accessing individual behavioral processes. Their recognition and verification can be framed as the identification of states of dynamical systems generated by physiological processes. Whereas a snap shot of a dynamical system gives information about its current state, a time series of past states captures its trajectory in state space. The descrip...

متن کامل

Fully Automatic Facial Action Recognition in Spontaneous Behavior

We present results on a user independent fully automatic system for real time recognition of facial actions from the Facial Action Coding System (FACS). The system automatically detects frontal faces in the video stream and codes each frame with respect to 20 Action units. We present preliminary results on a task of facial action detection in spontaneous expressions during discourse. Support ve...

متن کامل

Optimized Structure for Facial Action Unit Relationship Using Bayesian Network

Facial expression recognition has been a very important task for human-computer interactions. Computer vision techniques have been much employed to get the automated recognition of facial expression. Facial Action Coding System has best described on facial expression, which includes 46 action units that involve facial muscle movements. In this paper, the relationships between Action Units are m...

متن کامل

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Multi-View Dynamic Facial Action Unit Detection

We propose a novel convolutional neural network architecture to address the fine-grained recognition problem of multi-view dynamic facial action unit detection. We leverage recent gains in large-scale object recognition by formulating the task of predicting the presence or absence of a specific action unit in a still image of a human face as holistic classification. We then explore the design s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014